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Abstract—A service robot especially a care-providing robot, 
works in the vicinity of a human body and is sometimes even in 
direct contact with it. Conventional safety methods and 
precautions in industrial robotics are not applicable to such 
robots. This paper presents a safety approach for designing the 
safe care-providing robot FRIEND. The approach is applied in 
each step of design iteratively to identify and assess the potential 
hazards during design. The steps are explained briefly in this 
work. The main contribution of this paper is verification of safety 
requirements using the Ramadge-Wonham (RW) framework. 
The greater complexity of the tasks the robot will perform, the 
more complex is the identification of safety requirements. Use of 
this framework led us to analyze the requirements and verify 
them formally, systematically and on a modular basis. In our 
approach human-robot interaction (HRI) is also modeled by a set 
of uncontrolled events that may happen any time during 
operation. Subsequently the safety requirements are modified to 
consider these interactions. As a result the safety module behaves 
like a controller, running in parallel with the system, which 
maintains the system safe and works according to the safety 
requirements by enabling the admissible sequences of events. 
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I.  INTRODUCTION 
Up to now most service robot development has 

concentrated only on realization of the system. Less attention is 
paid to the safety considerations. Although several designers of 
service robots have started to launch their innovations into the 
market, there still exist neither international guidelines nor 
regulations comprising safety aspects for a specific product of 
the service robot type.  

Recently researchers have focused their attention to 
develop the standards for intelligent assist devices (IAD).Their 
work is basically adaptation of safety standards for industrial 
robot (e.g. ISO 10218) and machinery (e.g. ISO 13849). 
However their evolutions still ongoing and the established 
committees are still involved in this evolution [1]. While these 
standards are more focused on dynamic issues, the other 
current standards for safety-critical programmable devices can 
be still used for other general aspects of safety, such as design 
procedures (e.g. ISO 62262/IEC 61508). These standards set a 
generic approach for all safety life cycle [2] activities in the 
system design. 

Here an approach for safety in a care-providing robot 
FRIEND is discussed. Based on general safety and 
methodology of IEC 61508 [2], our approach is developed to 

comprise systematic ways to do the safety analysis process 
according to the overall safety life cycle phases. In this 
approach, which is a stepwise process, we start from the 
analysis and continue the analysis path up to the verification 
and validation of the realized safety requirements. The steps 
are partially tool supported to ease the task as well as to 
enhance the reliability of the results. We explain these steps 
briefly, and finally give an example that with more detail about 
verification that is novel application of Ramadge-Wonham 
(RW) framework. 

Hazard identification is the initial step, for which we use 
the common system engineering approaches for safety analysis 
to define possible credible hazards in the system. In these 
analyses we take the advantages of the software tool APIS-IQ 
to document the result systematically as well to impose version 
control in the development team. Hazard analysis on UML 
models of other robotic applications have successfully applied, 
such as robowalker MIRAS [3]. However the complexity of the 
analysis is different for each robotic application and depends 
on the complexity of the tasks that a robot can perform.  

After definition of the requirements, necessary to avoid the 
identified hazards, we implement these requirements in the 
system. Depending on the task, the implementation can be 
performed either into the already existing software control 
structure or into the parallel safety system which monitors the 
robot behavior especially in critical situations and decide about 
the proper action based on these observations. Finally the 
realization is verified by applying Ramadge-Wonham (RW) 
framework. Since introduction of this theory many researchers 
have worked on its application in different fields of system 
engineering. Some research results have been reported on robot 
in manufacturing cells [4,5] and some in mobile robots 
applications [6]. In [7] the authors applied this method to a 
medical application, which is used for a patient support system 
of a MRI scanner. However most of the previous works do the 
analysis for the known controlled system. In other words the 
reverse engineering is done for a system, in which the 
requirements are already known. Furthermore the analysis is   
carried out on fully autonomous systems with limited user 
interactions, or even no interaction at all. But a care–providing 
robot, is a semi-autonomous system and still under 
development. The safety requirements are still open questions 
that need further investigation.  

The novelty of our work is to apply this framework to carry 
out safety design verification, where an abstract model of a 
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system is checked for desired behavioral properties. The choice 
of abstract model and the related safety specification depends 
on the task to be performed and may vary from a task to 
another. However we show a simple example here to illustrate 
how the RW framework is applied for the systematic safe 
design and verification of a care- providing robot with human-
robot interaction (HRI).   

This paper is organized as follows. In section 2, at first a 
short summary about FRIEND system components and 
software architecture is given. In section 3, the safety approach 
is shown with brief explanation about each process step. The 
next two sections, 4 and 5, deal with theory of discrete event 
systems and supervisory control. We apply the theory to 
FRIEND system, given a simple case study for verification of 
safety requirement in section 6. Finally we conclude the paper 
and point out open problems and further works. 

II. CARE-PROVIDING ROBOT FRIEND 
FRIEND1

This robot is built around a robot arm, which is a 7 DOF 
manipulator mounted on a wheelchair. The robot can 
accomplish different types of scenarios, such as ADL (Activity 
Daily Life), workshop, library scenario for handicapped people 
and will help them to be independent from care personnel at 
least for 1.5 hours. Fig. 1 shows a side view of the system with 
a description of different parts. 

 system is the third generation of a multi-actuator 
and multi-sensor service robot, under development within the 
IAT research group at the University of Bremen. 

There are different input devices which receive a command 
in higher abstraction level (e.g. "pour a drink") from a user. A 
TFT display mounted on a panning arm in front of the user 
serves a human machine interface (HMI) with a touch-sensitive 
surface. For users who lack function in both hands, other input 
devices can be used (e.g. chin joystick, eye tracker, speech 
control, … ). 

Different sensors are used for perception of environment, 
such as: an intelligent tray for the precise location of objects to 
be manipulated on the tray and a stereo camera system for 
objects and obstacles recognition. There are some other 
additional sensors used for remote controlling of appliances in 
the environment, e.g. an infra-red control unit for opening 
doors. 

A software structure called MASSiVE (Multilayer 
Architecture for Semi-Autonomous Service Robots with 
Verified Task Execution) is developed for task planning and 
execution of tasks in FRIEND system [8].  

The task execution is as follows. The task is first selected 
by the user (e.g. pouring a drink), then initial monitoring is 
done with the stereo camera system mounted on top of the 
wheelchair. The user interacts with the system to complete the 
task. He is able to handle some erroneous situations that can be 
resolved by the user; for example he can support to locate the 
target   to be grasped, if it cannot be recognized by machine 
vision. More details  about    software  architecture   and  tasks’ 

                                                           
1 FRIEND : Functional Robot with dexterous arm and user- frIENdly 
interface for Disabled people    

 
Figure 1.  FRIEND system side view 

 

 execution can be found in other literatures [8,9]. 

The environment is not formally modelled in the practical 
sense, therefore any feedback signals transmitted from the 
environment are only semi-qualified. So the riskless  operation 
cannot be guaranteed at all times. Therefore additional sensors 
are necessary which observe the manipulation and send 
feedback to the system in case of observing unsafe situations 
during manipulation. 

III. SAFETY APPROACH FROM ANALYSIS TO VALIDATION 
In this section we explain briefly all the steps of our 

approach for the safety of care-providing robot. Fig. 2 shows 
these steps starting from analysis to verification and validation 
of the safety requirements. At the initial step for safety analysis 
the possible hazards in the system have to be determined. Here 
we apply the common methods in system engineering to the 
FRIEND system [10]. One of these methods is Failure Mode 
and Effect Analysis (FMEA). This method proceeds from 
known causes to unknown effects; thus it is an inductive 
technique and it is usually done after HAZard and OPerability 
analysis (HAZOP) [11]. It can be applied in the intermediate 
phase of development when the components of the system are 
known. We apply APIS-IQ software for systematic hazard 
analysis as well as for final methodical documentation. In this 
software application a tree structure of the system must first be 
extracted showing each component, together with its 
subcomponents having an important role in proper 
functionality of the component, and finally the entire system. 
As more than fifty percent of the development focuses on 
software development we break the system down into two 
major parts: Hardware and Software. For the software part, we 
break down the software component according to the software 
control architecture MASSiVE. To reduce complexity of the 
task and also for a feasible analysis of the software we consider 
only the interface functions used between different software 
modules. (IDL CORBA functions) 
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Figure 2.  Safety approach process steps 

As the software development in this project is done in 
rhapsody environment, failure modes for the software are 
extracted from UML models of each related object or module. 
For the hardware part we do the analysis as it is common in 
system engineering. The reader is referred to the other 
literature for more details and examples about methods [10, 
11]. 

All the failure modes, which would result finally in unsafe 
behaviour of the system, are filtered out in the next step. By 
determining the remedies for these hazards the safety 
requirements are achieved and are listed in natural language at 
this step.  

The next step is the realisation of safety requirements. 
These requirements are realised in a safety module run in 
parallel to the system [12]. The idea of the safety module for 
FRIEND system is to add a monitoring system equipped with 
additional sensors for observing the important parameters 
during manipulation, which play a major role in safety of the 
system. Then based on this observation the module decides for 
activation or deactivation of the event or series of events which 
would finally results in bringing the system to a hazardous 
situation. In other words the module acts as a supervisor to 
determine the next state, using a practical and efficient way, 
from the trajectory of states in the implementation. This 
decision is made by enabling or disabling admissible events. 
This step will be further discusses in section 6 by an example. 
The actions are carried out either by existing actuators (e.g. by 
direct controlling the manipulator) or by extra actuators, which 
are relevant only for safety purposes (e.g. watch dog system). 
Fig. 3 shows the schematic diagram for safety module for the 
system.The boundary of the safety module shows only a part of 
actuators and sensors. The reason, as discussed above, is that 
observation and actions by the safety module can be performed 
either by specific sensors and actuators only for safety purposes 
or by the already reliable existing sensors and actuators used 
for manipulation. 

As the user is always in interaction with the service-robot 
during manipulation, his contribution might enhance 
availability of the system in some abnormal situations. 
Depending on the hazard categories a warning message on 
human machine user interface is given to the user for correct 

actions to keep the system safe and operational as well. Also 
depending on the user observation, his command might change 
the system manipulation process such that the safety is ensured.  

Finally for safety design’s verification a formal method 
based on RW framework is developed. The safety requirements 
are expressed with the natural language which can be 
formalized in automata that show the desired behaviour of the 
system. Taking the advantage of supervisory control theory, the 
maximal permissive behaviour of the system (considering 
uncontrollable events) guaranteeing these requirements can be 
automatically calculated and the system is correct by 
construction.  However since the verification consider only 
abstract models and the results depend on the correctness of the 
models itself, the final realisation has to be validated against 
safety requirements. Theses can be done by a series of real time 
testing and human in the loop simulations. These methods are 
beyond scope of work of this work and the next sections more 
focus on verification, starting by a brief introduction to the 
related theory. 

 
Figure 3.  Safety module schematic diagram 

IV. DISCRETE-EVENT BEHAVOIUR OF FRIEND 
In a discrete-event system (DES) the state space of the 

system is discrete and state transitions are event-driven, which 
can be seen at different point of time. A service robot’s 
behavior is viewed as a collection of events and states. For 
example all states that robot can reach during implementation 
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of a daily life task can be interpreted as states of the system. As 
an example consider task scenario of pouring a drink. The 
robot manipulator can reach the following states: the gripper is 
opened, manipulator is in the bottle position, the manipulator is 
grasping bottle, the manipulator with grasped bottle is in glass 
position, and manipulator is in the state of pouring water into 
the glass. 

The transitions can be interpreted as commands which are 
given to the manipulator at different points of time through the 
program: open gripper, move manipulator to bottle position, 
grasp bottle, move manipulator and grasped bottle to glass 
position, pour water into glass. These can be extracted from the 
process abstract structure (PSA) for each task [9]. 

A discrete-event system can be formally modeled by an 
automaton. An automaton is usually presented by 5-tuple set 
[13,14]: 

 G= {Q, Σ, δ, q0, Qm}. (1) 

Here Q is a finite set of states, Σ is a finite set of events 
σ, which make up the alphabet of the system, δ is the transition 
(partial) function δ(q, σ)=q', in which q' is the next state, q0 is 
the initial state and Qm is the subset of final or marked states. 
Actually G models the physical system and is called a 
generator. It generates sequences of the events of the system. 

The robot system like any other DES has a set of events 
associated with it. This set of event is thought as the alphabet 
of the system. Each scenario for robot tasks can be written as a 
sequence, or string, over this alphabet which finally builds the 
language of the system, defined below: 

 L (G) :={s ∈ Σ* :f(x0,s) is defined}. (2) 
The language generated by automaton G is defined as: 

 L m (G) :={ s ∈ L (G): f(x0,s) ∈ Qm }. (3) 

For example for the eating scenario, looking into PSAs for 
eating scenario, the marked language would be a complete 
sequence of events starting from initializing the task up to the 
final events, which is eating and the task is finished. 

Once the language of the system and automaton which 
generates this language is known, other safety properties of the 
system can also be analyzed. For example it can be determined 
if from a given state ‘x’ another state ‘y’ is reachable, or if in a 
given automaton a substring is possible or does not exist. 

For modular design, the automaton model of different 
subsystems of the system can be combined together to build a 
larger system. These combinations can be accomplished by 
suitable binary operations on the automaton models. The most 
usual operation, which synchronizes two automata on common 
events, is called synchronous product. In this composition the 
common events in two subsystems are allowed to change the 
state of the system, provided they are included in the current 
active event sets of both subsystems. 

There is also a complete synchronization which only lets 
the common events to be triggered, called product composition 
(or ‘meet’). This is used when two specifications for 

subsystems need to be combined to find the complete 
specification for the two subsystems. These two or more 
specifications must be completely synchronized together. 

V. SUPERVISORY CONTROL THEORY 
Supervisory control theory known as the Ramadge-

Wonham (RW) framework was pioneered by them in the early 
1980's [13, 14]. Since then many other researchers have also 
made contributed to its development. In this theory the plant is 
first modeled as a finite state automaton. Then using the 
automaton model of the specification for the plant, the latter 
will be controlled in a feedback loop. The most challenging 
step is constructing these two models for the real problem. A 
formal approach for modeling plant and specification is still an 
open area for research; owing to the computation complexity 
(especially for large systems) and model interpretation the 
application of RW (as with any theory) pose a challenge to the 
practitioners. 

In this framework a possible set of enabled events is called 
control pattern. The supervisor is any function in the form: 

 S:  L(G)  →  2Σ. (4) 

The controlled behavior is defined as a language L(S/G), 
which is a subset of L(G) and has followings properties: 

1. ε ∈ L(S/G); (ε is an empty sting) 
2. (s∈ L (S/G) ∧ σ ∈ S(s) ∧ sσ ∈ L (G))⇒sσ ∈ L(S/G); 
3. No other strings belong to L (S/G). 

The marked language of the supervisor is (typically): 

 Lm (S/G) =L(S/G) ∩ Lm (G) (5) 
The events in the system are divided to controllable and 

uncontrollable events. 

 Σ=Σc ∪ Σu (6) 
The controllable events can be prevented from occurring by 

the supervisor; for instance by commands to an actuator. On 
the other hand, the supervisor cannot directly prevent the 
occurrence of uncontrollable events, such event triggered from 
environment, humans, by actuators (like finishing a task), data 
read from sensors or faults occurring in the system hardware.  

A specification represented by language K which is a 
subset of marked language of system is said to be controllable 
if: 

 ΚΣu ∩ L (G) ⊆  Κ (7) 
 

, in whichΚ is  the prefix closure of language K. 

Then a marked non-blocking supervisor exists such that  

 L(S/G) = Κ (8) 
For more detail about discrete-event systems and 

supervisory control theory the reader is referred to the related 
literatures.[13−15] 

VI. IMPLEMENTATION OF APPROACH   

CASE STUDY- ROBOT AND WHEELCHAIR INTERACTION 
Here we show the verification approach for one safety 

requirement in the system. The user can select different input 
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devices to give commands to the robot arm to perform some 
tasks for him. He can also give commands through the human-
machine interface to control the wheelchair movement. After 
FMEA and HAZOP analysis for the robot arm, one of the 
outputs of the analysis is: “owing to the possibility of collision 
with the environment and bringing the user to an unsafe 
situation, the synchronous movement of robot and wheelchair 
must be prevented”. In other words, once the robot is 
manipulating, the wheelchair cannot move. While this 
requirement is already implemented in the software structure, it 
also needs to be added to the safety module and monitoring 
system. The remedy for this hazard is monitoring robot 
movement and wheelchair movement with separate external 
sensors and sending feedback about their readings. 

For this problem we can write down the safety requirement 
in natural language: “Wheelchair cannot move while the robot 
arm is moving, and vice versa”. 

For the realization, the internal sensors of the robot arm are 
used to measure its movement. Also a motion sensor is 
mounted on the wheels to detect wheelchair movement. Based 
on these observations the safety module then decides when it is 
safe to start movement of the robot or the wheelchair. In other 
words it checks the preconditions necessary for the safe robot 
or wheelchair movement. 

To build such a controller formally, we first model the 
subsystems, involved in this requirement, in automata. The 
robot arm can reach numerous numbers of states in each task; 
however the abstract model exhibiting its relevance for control 
design is enough. To this end it can be modeled as a 2-state 
automaton modeling receiving a start command from the 
controller and terminating its motion when the assigned task is 
finished. The wheelchair model is also one automaton with two 
states with two events: start moving and stop moving. 

 
Figure 4.  Robot’s and wheelchair’s movement model 

In order to interpret the above mentioned safety 
requirement in automata we need to bring in two specifications. 
For the first specification let the start command to the robot 
arm, be issued only when the wheelchair is not moving.  In the 
same way the second specification restricts the wheelchair 
movement while the robot is moving by prohibiting it from 
starting. These are shown in Fig. 5. 

However these specifications consider only a fully 
autonomous system. We have to take into account the human 
interactins with the system. He can interact with system 
through human machine interface and activate commands for 
moving robot or those for moving wheelchair anytime. 

  
Figure 5.  Robot’s and wheelchair’s movement safety specification 

This can be abstractly modeled by two uncontrollable 
events enabled at each state of the system model. In other 
words the model of HRI would be a single automaton with two 
uncontrollable events ‘crstmv’,’cwstmv’ (due to the space limit 
we skip to draw this model that is only a single automaton). 
Also the admissible behavior in case of HRI must be added to 
the specifications. This is modeled by mutual exclusion of 
executing commands for the movement of wheelchair and 
robot issued by user; i.e. When the command for moving robot 
(wheelchair) is given, the other command moving wheelchair 
(robot) is ignored (Fig. 6). The self-loop of the other unrelated 
events must be considered in the models. The other important 
point is considering the uncontrollable events to avoid the 
uncontrollability in the final specification.  

 
Figure 6.  Robot’s and wheelchair’s movement safety specification for HRI 

The specification for the whole system would be the 
product composition (meet) of specifications; the resulting 
automaton is shown in Fig. 7. However looking into the 
language of the specification we can see an undesired behavior; 
namely when two commands are received at the same time for 
moving wheelchair and moving robot, they can be executed in 
any order. 

L (K) ={ε,’crstmv’’cwstmv’’wstmv’, 

’cwstmv’’crstmv’’rstmv’,….} 

 The specification must be changed to remember this 
situation, namely the order of given commands. For this reason 
the states S2 must be spitted into two states. (It is not depicted 
here, due to the space limit). After this modification in 
specification the final calculated supervisor shown on Fig. 8 
fulfills all above mentioned requirements. 

Although what is given here as safety requirement is a 
simplistic example of verification, it serves to demonstrate how 
behavior of robot can be modeled formally and verified 
according to the safety requirements systematically, based on 
RW  framework.  The  safety  requirements  are not  always  as  
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Figure 7.  System specification 

simple as given example and maybe more preconditions need 
to be verified before a safety action  can  happen  (e.g. handling 
the situation when robot moves toward user while pouring a 
hot drink). 

The application of supervisory control theory, apart from 
safety matters (correct execution order of events), can also be 
advantageous when the blocking problem becomes an issue to 
be solved. Blocking usually happens in circumstances when 
two tasks need one resource to be executed at the same time, 
for example, in FRIEND, when the user demands from the 
robot the execution of different tasks simultaneously. 

 
Figure 8.  Supervisor 

VII. CONCLUSION AND FURTHER WORK 
In this paper we discussed a stepwise approach for safety of 

or a care-providing robot system. This approach complies with 
the standards for safety of programmable automation systems. 
The novelty of the approach lies in the systematic verification 
of safety requirements for such a complex system that works in 
dynamic environment and operates semi-autonomously. In 
these systems the specification and safety requirements cannot 
be established straightforwardly as for industrial robotic 
applications. 

We used a model-based verification, based on the RW 
framework, for the safety requirement’s verification, in order to 

be sure about the correctness of the implemented safety 
controller. Taking advantage of supervisory control theory, we 
can confirm that the controller is correct by construction. For 
the case study we showed the implementation for a simple 
example in FRIEND. The techniques accompany all system 
development phases to ensure safety of the final designed 
system. They are applied iteratively parallel to the 
modifications in the system and design revisions, until the final 
design is achieved. 
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