
Building a Safe Care-Providing Robot

Leila Fotoohi
Automation Institute
University of Bremen

Bremen,Germany
fotoohi@iat.uni-bremen.de

Axel Gräser
Automation Institute
University of Bremen

Bremen,Germany
ag@iat.uni-bremen.de

Abstract—A service robot especially a care-providing robot,
works in the vicinity of a human body and is sometimes even in
direct contact with it. Conventional safety methods and
precautions in industrial robotics are not applicable to such
robots. This paper presents a safety approach for designing the
safe care-providing robot FRIEND. The approach is applied in
each step of design iteratively to identify and assess the potential
hazards during design. The steps are explained briefly in this
work. The main contribution of this paper is verification of safety
requirements using the Ramadge-Wonham (RW) framework.
The greater complexity of the tasks the robot will perform, the
more complex is the identification of safety requirements. Use of
this framework led us to analyze the requirements and verify
them formally, systematically and on a modular basis. In our
approach human-robot interaction (HRI) is also modeled by a set
of uncontrolled events that may happen any time during
operation. Subsequently the safety requirements are modified to
consider these interactions. As a result the safety module behaves
like a controller, running in parallel with the system, which
maintains the system safe and works according to the safety
requirements by enabling the admissible sequences of events.

Keywords-service robot, reliability, supervisory control theory

I. INTRODUCTION
Up to now most service robot development has

concentrated only on realization of the system. Less attention is
paid to the safety considerations. Although several designers of
service robots have started to launch their innovations into the
market, there still exist neither international guidelines nor
regulations comprising safety aspects for a specific product of
the service robot type.

Recently researchers have focused their attention to
develop the standards for intelligent assist devices (IAD).Their
work is basically adaptation of safety standards for industrial
robot (e.g. ISO 10218) and machinery (e.g. ISO 13849).
However their evolutions still ongoing and the established
committees are still involved in this evolution [1]. While these
standards are more focused on dynamic issues, the other
current standards for safety-critical programmable devices can
be still used for other general aspects of safety, such as design
procedures (e.g. ISO 62262/IEC 61508). These standards set a
generic approach for all safety life cycle [2] activities in the
system design.

Here an approach for safety in a care-providing robot
FRIEND is discussed. Based on general safety and
methodology of IEC 61508 [2], our approach is developed to

comprise systematic ways to do the safety analysis process
according to the overall safety life cycle phases. In this
approach, which is a stepwise process, we start from the
analysis and continue the analysis path up to the verification
and validation of the realized safety requirements. The steps
are partially tool supported to ease the task as well as to
enhance the reliability of the results. We explain these steps
briefly, and finally give an example that with more detail about
verification that is novel application of Ramadge-Wonham
(RW) framework.

Hazard identification is the initial step, for which we use
the common system engineering approaches for safety analysis
to define possible credible hazards in the system. In these
analyses we take the advantages of the software tool APIS-IQ
to document the result systematically as well to impose version
control in the development team. Hazard analysis on UML
models of other robotic applications have successfully applied,
such as robowalker MIRAS [3]. However the complexity of the
analysis is different for each robotic application and depends
on the complexity of the tasks that a robot can perform.

After definition of the requirements, necessary to avoid the
identified hazards, we implement these requirements in the
system. Depending on the task, the implementation can be
performed either into the already existing software control
structure or into the parallel safety system which monitors the
robot behavior especially in critical situations and decide about
the proper action based on these observations. Finally the
realization is verified by applying Ramadge-Wonham (RW)
framework. Since introduction of this theory many researchers
have worked on its application in different fields of system
engineering. Some research results have been reported on robot
in manufacturing cells [4,5] and some in mobile robots
applications [6]. In [7] the authors applied this method to a
medical application, which is used for a patient support system
of a MRI scanner. However most of the previous works do the
analysis for the known controlled system. In other words the
reverse engineering is done for a system, in which the
requirements are already known. Furthermore the analysis is
carried out on fully autonomous systems with limited user
interactions, or even no interaction at all. But a care–providing
robot, is a semi-autonomous system and still under
development. The safety requirements are still open questions
that need further investigation.

The novelty of our work is to apply this framework to carry
out safety design verification, where an abstract model of a

2011 IEEE International Conference on Rehabilitation Robotics
Rehab Week Zurich, ETH Zurich Science City, Switzerland, June 29 - July 1, 2011

978-1-4244-9861-1/11/$26.00 ©2011 IEEE 965

system is checked for desired behavioral properties. The choice
of abstract model and the related safety specification depends
on the task to be performed and may vary from a task to
another. However we show a simple example here to illustrate
how the RW framework is applied for the systematic safe
design and verification of a care- providing robot with human-
robot interaction (HRI).

This paper is organized as follows. In section 2, at first a
short summary about FRIEND system components and
software architecture is given. In section 3, the safety approach
is shown with brief explanation about each process step. The
next two sections, 4 and 5, deal with theory of discrete event
systems and supervisory control. We apply the theory to
FRIEND system, given a simple case study for verification of
safety requirement in section 6. Finally we conclude the paper
and point out open problems and further works.

II. CARE-PROVIDING ROBOT FRIEND
FRIEND1

This robot is built around a robot arm, which is a 7 DOF
manipulator mounted on a wheelchair. The robot can
accomplish different types of scenarios, such as ADL (Activity
Daily Life), workshop, library scenario for handicapped people
and will help them to be independent from care personnel at
least for 1.5 hours. Fig. 1 shows a side view of the system with
a description of different parts.

 system is the third generation of a multi-actuator
and multi-sensor service robot, under development within the
IAT research group at the University of Bremen.

There are different input devices which receive a command
in higher abstraction level (e.g. "pour a drink") from a user. A
TFT display mounted on a panning arm in front of the user
serves a human machine interface (HMI) with a touch-sensitive
surface. For users who lack function in both hands, other input
devices can be used (e.g. chin joystick, eye tracker, speech
control, …).

Different sensors are used for perception of environment,
such as: an intelligent tray for the precise location of objects to
be manipulated on the tray and a stereo camera system for
objects and obstacles recognition. There are some other
additional sensors used for remote controlling of appliances in
the environment, e.g. an infra-red control unit for opening
doors.

A software structure called MASSiVE (Multilayer
Architecture for Semi-Autonomous Service Robots with
Verified Task Execution) is developed for task planning and
execution of tasks in FRIEND system [8].

The task execution is as follows. The task is first selected
by the user (e.g. pouring a drink), then initial monitoring is
done with the stereo camera system mounted on top of the
wheelchair. The user interacts with the system to complete the
task. He is able to handle some erroneous situations that can be
resolved by the user; for example he can support to locate the
target to be grasped, if it cannot be recognized by machine
vision. More details about software architecture and tasks’

1 FRIEND : Functional Robot with dexterous arm and user- frIENdly
interface for Disabled people

Figure 1. FRIEND system side view

 execution can be found in other literatures [8,9].

The environment is not formally modelled in the practical
sense, therefore any feedback signals transmitted from the
environment are only semi-qualified. So the riskless operation
cannot be guaranteed at all times. Therefore additional sensors
are necessary which observe the manipulation and send
feedback to the system in case of observing unsafe situations
during manipulation.

III. SAFETY APPROACH FROM ANALYSIS TO VALIDATION
In this section we explain briefly all the steps of our

approach for the safety of care-providing robot. Fig. 2 shows
these steps starting from analysis to verification and validation
of the safety requirements. At the initial step for safety analysis
the possible hazards in the system have to be determined. Here
we apply the common methods in system engineering to the
FRIEND system [10]. One of these methods is Failure Mode
and Effect Analysis (FMEA). This method proceeds from
known causes to unknown effects; thus it is an inductive
technique and it is usually done after HAZard and OPerability
analysis (HAZOP) [11]. It can be applied in the intermediate
phase of development when the components of the system are
known. We apply APIS-IQ software for systematic hazard
analysis as well as for final methodical documentation. In this
software application a tree structure of the system must first be
extracted showing each component, together with its
subcomponents having an important role in proper
functionality of the component, and finally the entire system.
As more than fifty percent of the development focuses on
software development we break the system down into two
major parts: Hardware and Software. For the software part, we
break down the software component according to the software
control architecture MASSiVE. To reduce complexity of the
task and also for a feasible analysis of the software we consider
only the interface functions used between different software
modules. (IDL CORBA functions)

966

Figure 2. Safety approach process steps

As the software development in this project is done in
rhapsody environment, failure modes for the software are
extracted from UML models of each related object or module.
For the hardware part we do the analysis as it is common in
system engineering. The reader is referred to the other
literature for more details and examples about methods [10,
11].

All the failure modes, which would result finally in unsafe
behaviour of the system, are filtered out in the next step. By
determining the remedies for these hazards the safety
requirements are achieved and are listed in natural language at
this step.

The next step is the realisation of safety requirements.
These requirements are realised in a safety module run in
parallel to the system [12]. The idea of the safety module for
FRIEND system is to add a monitoring system equipped with
additional sensors for observing the important parameters
during manipulation, which play a major role in safety of the
system. Then based on this observation the module decides for
activation or deactivation of the event or series of events which
would finally results in bringing the system to a hazardous
situation. In other words the module acts as a supervisor to
determine the next state, using a practical and efficient way,
from the trajectory of states in the implementation. This
decision is made by enabling or disabling admissible events.
This step will be further discusses in section 6 by an example.
The actions are carried out either by existing actuators (e.g. by
direct controlling the manipulator) or by extra actuators, which
are relevant only for safety purposes (e.g. watch dog system).
Fig. 3 shows the schematic diagram for safety module for the
system.The boundary of the safety module shows only a part of
actuators and sensors. The reason, as discussed above, is that
observation and actions by the safety module can be performed
either by specific sensors and actuators only for safety purposes
or by the already reliable existing sensors and actuators used
for manipulation.

As the user is always in interaction with the service-robot
during manipulation, his contribution might enhance
availability of the system in some abnormal situations.
Depending on the hazard categories a warning message on
human machine user interface is given to the user for correct

actions to keep the system safe and operational as well. Also
depending on the user observation, his command might change
the system manipulation process such that the safety is ensured.

Finally for safety design’s verification a formal method
based on RW framework is developed. The safety requirements
are expressed with the natural language which can be
formalized in automata that show the desired behaviour of the
system. Taking the advantage of supervisory control theory, the
maximal permissive behaviour of the system (considering
uncontrollable events) guaranteeing these requirements can be
automatically calculated and the system is correct by
construction. However since the verification consider only
abstract models and the results depend on the correctness of the
models itself, the final realisation has to be validated against
safety requirements. Theses can be done by a series of real time
testing and human in the loop simulations. These methods are
beyond scope of work of this work and the next sections more
focus on verification, starting by a brief introduction to the
related theory.

Figure 3. Safety module schematic diagram

IV. DISCRETE-EVENT BEHAVOIUR OF FRIEND
In a discrete-event system (DES) the state space of the

system is discrete and state transitions are event-driven, which
can be seen at different point of time. A service robot’s
behavior is viewed as a collection of events and states. For
example all states that robot can reach during implementation

967

of a daily life task can be interpreted as states of the system. As
an example consider task scenario of pouring a drink. The
robot manipulator can reach the following states: the gripper is
opened, manipulator is in the bottle position, the manipulator is
grasping bottle, the manipulator with grasped bottle is in glass
position, and manipulator is in the state of pouring water into
the glass.

The transitions can be interpreted as commands which are
given to the manipulator at different points of time through the
program: open gripper, move manipulator to bottle position,
grasp bottle, move manipulator and grasped bottle to glass
position, pour water into glass. These can be extracted from the
process abstract structure (PSA) for each task [9].

A discrete-event system can be formally modeled by an
automaton. An automaton is usually presented by 5-tuple set
[13,14]:

 G= {Q, Σ, δ, q0, Qm}. (1)

Here Q is a finite set of states, Σ is a finite set of events
σ, which make up the alphabet of the system, δ is the transition
(partial) function δ(q, σ)=q', in which q' is the next state, q0 is
the initial state and Qm is the subset of final or marked states.
Actually G models the physical system and is called a
generator. It generates sequences of the events of the system.

The robot system like any other DES has a set of events
associated with it. This set of event is thought as the alphabet
of the system. Each scenario for robot tasks can be written as a
sequence, or string, over this alphabet which finally builds the
language of the system, defined below:

 L (G) :={s ∈ Σ* :f(x0,s) is defined}. (2)
The language generated by automaton G is defined as:

 L m (G) :={ s ∈ L (G): f(x0,s) ∈ Qm }. (3)

For example for the eating scenario, looking into PSAs for
eating scenario, the marked language would be a complete
sequence of events starting from initializing the task up to the
final events, which is eating and the task is finished.

Once the language of the system and automaton which
generates this language is known, other safety properties of the
system can also be analyzed. For example it can be determined
if from a given state ‘x’ another state ‘y’ is reachable, or if in a
given automaton a substring is possible or does not exist.

For modular design, the automaton model of different
subsystems of the system can be combined together to build a
larger system. These combinations can be accomplished by
suitable binary operations on the automaton models. The most
usual operation, which synchronizes two automata on common
events, is called synchronous product. In this composition the
common events in two subsystems are allowed to change the
state of the system, provided they are included in the current
active event sets of both subsystems.

There is also a complete synchronization which only lets
the common events to be triggered, called product composition
(or ‘meet’). This is used when two specifications for

subsystems need to be combined to find the complete
specification for the two subsystems. These two or more
specifications must be completely synchronized together.

V. SUPERVISORY CONTROL THEORY
Supervisory control theory known as the Ramadge-

Wonham (RW) framework was pioneered by them in the early
1980's [13, 14]. Since then many other researchers have also
made contributed to its development. In this theory the plant is
first modeled as a finite state automaton. Then using the
automaton model of the specification for the plant, the latter
will be controlled in a feedback loop. The most challenging
step is constructing these two models for the real problem. A
formal approach for modeling plant and specification is still an
open area for research; owing to the computation complexity
(especially for large systems) and model interpretation the
application of RW (as with any theory) pose a challenge to the
practitioners.

In this framework a possible set of enabled events is called
control pattern. The supervisor is any function in the form:

 S: L(G) → 2Σ. (4)

The controlled behavior is defined as a language L(S/G),
which is a subset of L(G) and has followings properties:

1. ε ∈ L(S/G); (ε is an empty sting)
2. (s∈ L (S/G) ∧ σ ∈ S(s) ∧ sσ ∈ L (G))⇒sσ ∈ L(S/G);
3. No other strings belong to L (S/G).

The marked language of the supervisor is (typically):

 Lm (S/G) =L(S/G) ∩ Lm (G) (5)
The events in the system are divided to controllable and

uncontrollable events.

 Σ=Σc ∪ Σu (6)
The controllable events can be prevented from occurring by

the supervisor; for instance by commands to an actuator. On
the other hand, the supervisor cannot directly prevent the
occurrence of uncontrollable events, such event triggered from
environment, humans, by actuators (like finishing a task), data
read from sensors or faults occurring in the system hardware.

A specification represented by language K which is a
subset of marked language of system is said to be controllable
if:

 ΚΣu ∩ L (G) ⊆ Κ (7)

, in whichΚ is the prefix closure of language K.

Then a marked non-blocking supervisor exists such that

 L(S/G) = Κ (8)
For more detail about discrete-event systems and

supervisory control theory the reader is referred to the related
literatures.[13−15]

VI. IMPLEMENTATION OF APPROACH

CASE STUDY- ROBOT AND WHEELCHAIR INTERACTION
Here we show the verification approach for one safety

requirement in the system. The user can select different input

968

devices to give commands to the robot arm to perform some
tasks for him. He can also give commands through the human-
machine interface to control the wheelchair movement. After
FMEA and HAZOP analysis for the robot arm, one of the
outputs of the analysis is: “owing to the possibility of collision
with the environment and bringing the user to an unsafe
situation, the synchronous movement of robot and wheelchair
must be prevented”. In other words, once the robot is
manipulating, the wheelchair cannot move. While this
requirement is already implemented in the software structure, it
also needs to be added to the safety module and monitoring
system. The remedy for this hazard is monitoring robot
movement and wheelchair movement with separate external
sensors and sending feedback about their readings.

For this problem we can write down the safety requirement
in natural language: “Wheelchair cannot move while the robot
arm is moving, and vice versa”.

For the realization, the internal sensors of the robot arm are
used to measure its movement. Also a motion sensor is
mounted on the wheels to detect wheelchair movement. Based
on these observations the safety module then decides when it is
safe to start movement of the robot or the wheelchair. In other
words it checks the preconditions necessary for the safe robot
or wheelchair movement.

To build such a controller formally, we first model the
subsystems, involved in this requirement, in automata. The
robot arm can reach numerous numbers of states in each task;
however the abstract model exhibiting its relevance for control
design is enough. To this end it can be modeled as a 2-state
automaton modeling receiving a start command from the
controller and terminating its motion when the assigned task is
finished. The wheelchair model is also one automaton with two
states with two events: start moving and stop moving.

Figure 4. Robot’s and wheelchair’s movement model

In order to interpret the above mentioned safety
requirement in automata we need to bring in two specifications.
For the first specification let the start command to the robot
arm, be issued only when the wheelchair is not moving. In the
same way the second specification restricts the wheelchair
movement while the robot is moving by prohibiting it from
starting. These are shown in Fig. 5.

However these specifications consider only a fully
autonomous system. We have to take into account the human
interactins with the system. He can interact with system
through human machine interface and activate commands for
moving robot or those for moving wheelchair anytime.

Figure 5. Robot’s and wheelchair’s movement safety specification

This can be abstractly modeled by two uncontrollable
events enabled at each state of the system model. In other
words the model of HRI would be a single automaton with two
uncontrollable events ‘crstmv’,’cwstmv’ (due to the space limit
we skip to draw this model that is only a single automaton).
Also the admissible behavior in case of HRI must be added to
the specifications. This is modeled by mutual exclusion of
executing commands for the movement of wheelchair and
robot issued by user; i.e. When the command for moving robot
(wheelchair) is given, the other command moving wheelchair
(robot) is ignored (Fig. 6). The self-loop of the other unrelated
events must be considered in the models. The other important
point is considering the uncontrollable events to avoid the
uncontrollability in the final specification.

Figure 6. Robot’s and wheelchair’s movement safety specification for HRI

The specification for the whole system would be the
product composition (meet) of specifications; the resulting
automaton is shown in Fig. 7. However looking into the
language of the specification we can see an undesired behavior;
namely when two commands are received at the same time for
moving wheelchair and moving robot, they can be executed in
any order.

L (K) ={ε,’crstmv’’cwstmv’’wstmv’,

’cwstmv’’crstmv’’rstmv’,….}

 The specification must be changed to remember this
situation, namely the order of given commands. For this reason
the states S2 must be spitted into two states. (It is not depicted
here, due to the space limit). After this modification in
specification the final calculated supervisor shown on Fig. 8
fulfills all above mentioned requirements.

Although what is given here as safety requirement is a
simplistic example of verification, it serves to demonstrate how
behavior of robot can be modeled formally and verified
according to the safety requirements systematically, based on
RW framework. The safety requirements are not always as

969

Figure 7. System specification

simple as given example and maybe more preconditions need
to be verified before a safety action can happen (e.g. handling
the situation when robot moves toward user while pouring a
hot drink).

The application of supervisory control theory, apart from
safety matters (correct execution order of events), can also be
advantageous when the blocking problem becomes an issue to
be solved. Blocking usually happens in circumstances when
two tasks need one resource to be executed at the same time,
for example, in FRIEND, when the user demands from the
robot the execution of different tasks simultaneously.

Figure 8. Supervisor

VII. CONCLUSION AND FURTHER WORK
In this paper we discussed a stepwise approach for safety of

or a care-providing robot system. This approach complies with
the standards for safety of programmable automation systems.
The novelty of the approach lies in the systematic verification
of safety requirements for such a complex system that works in
dynamic environment and operates semi-autonomously. In
these systems the specification and safety requirements cannot
be established straightforwardly as for industrial robotic
applications.

We used a model-based verification, based on the RW
framework, for the safety requirement’s verification, in order to

be sure about the correctness of the implemented safety
controller. Taking advantage of supervisory control theory, we
can confirm that the controller is correct by construction. For
the case study we showed the implementation for a simple
example in FRIEND. The techniques accompany all system
development phases to ensure safety of the final designed
system. They are applied iteratively parallel to the
modifications in the system and design revisions, until the final
design is achieved.

ACKNOWLEDGMENT
The authors would like to thank Professor W. M. Wonham

for his helpful suggestions, encouragement and advice during
preparation of this work.

REFERENCES

[1] Antonio Bicchi, Michael A. Peshkin, J. Edward Colgate “Safety for
physical robot-uuman interaction” in B.Siciliano, O. Khatib, Handbook
of Robotics, page 1335-1348.

[2] IEC 61508 “Functinal safety of electrical/electronic/programmable
electronic safety-related systems”.

[3] Jeremie Guiochet, Damien Martin-Guillerez, David Powell,“Experience
with a model-based user-centered risk assessment for service robots” ,
IEEE 12th International Symposium on High Assurance Systems
Engineering, 2010.

[4] B. A. Brandin, “The real-time supervisory control of an experimental
manufacturing cell”, IEEE Transactions on Robotics and Automation,
Vol. 12, No.1, February 1996.

[5] R. J. Leduc and W. M. Wonham, “Discrete event systems modeling and
control of a manufacturing testbed”, Canadian Conference on Electrical
and Computer Engineering, Vol. 2, 1995.

[6] Jing Lui and Houshang Darabi “Ramadge-Wonham supervisory control
of mobile robots: lessons from practice”, IEEE International Conference
on Robotics 8 Automation, 2002.

[7] Theunissen, RJM; Schiffelers, RRH; Beek, van, DA (Bert); Rooda, JE
"Supervisory control synthesis for a patient support system", Eindhoven
University of Technology, 2008.

[8] Martens, O. Prenzel, J. Feuser, and A. Gräser: "MASSiVE: multi-layer
architecture for semi-autonomous service-robots with verified task
execution"; Proceedings of 10th Int. Conf. on Optimization of Electrical
and Electronic Equipments , vol 3, pp. 107-112; 2006; May, Brasov,
Romania, ISBN 973-653-705-8.

[9] Oliver Prenzel: "Process model for the development of semi-
autonomous service robots"; PhD Dissertation, University of Bremen;
Shaker, 2009.

[10] L.Fotoohi: "Safety Analysis and Methods in Safety Critical Systems:
Application in FRIENDII"; 2006; 28th Colloquium of Automation;
Salzhausen; November,unpublished.

[11] Felix Redmill, Morris Chuddleigh, James Catmur, "System safety:
HAZOP and software HAZOP" , John wiley & Sons ,1999.

[12] Leila Fotoohi, Axel Gräser “A supervisory control approach for safe
behavior of service robot, case study: FRIEND”; 25th ACM Symposium
on Applied Computing , March 22-26,2010, Sierre, Switzerland.

[13] W.M.Wonham,”Supervisory control of discrete systems”,
2010-11, University of Toronto (available at
http://www.control.utoronto.ca/DES).

[14] P. J. Ramadge and W. M. Wonham, "Supervisory control of a class of
discrete event processes," SIAM J. Contr. Optim., vol. 25, no. 1, pp.
206-230, Jan. 1987.

[15] Christos G. Cassandrass, Stephane Lafortune, "Introduction to discrete
event systems",Springer,1999.

970

